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ABSTRACT: Keeping in view the importance of quaternions and their roles in various problems of physics, in this
paper, we have made an attempt to reformulate the quantum equations of dyons in terms of simple, compact and
consistent notations of quaternions. Establishing the connection between the quaternion basis elements and the Pauli
spin matrices, we have reformulated the generalized wave function, generalized four-potential, generalized current,
Lorentz force equation of motion associated with dyons in simple and compact quater nion notations. It has been shown
that quaternionic form of generalized potential generalized current and Lorentz force equation of motion not only
compact and simple but also remains invariant under quaternion transformations showing that the presented
formulation is manifestly covariant. Generalized Maxwell-Dirac eguation, generalized field tensor and continuity
equation have also been reformulated by means of consistent quaternion notation in simple and compact forms. It has
been shown that the reformulation of quantum equations by means of quaternions of dyons reproduces the theory of
electric char ge (magnetic monopole) in the absence of magnetic monopole (electric char ge) on dyons.
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I. INTRODUCTION

Quaternions were invented by Hamilton [1] to extend the theory of complex variables to three dimensions. Recently, there has
been arevival inthe formulation of natural laws within the framework of general quaternion algebra and many of the basic
physical equations [2-6] have been reformulated by means of quaternions. The quaternion quantum mechanics (QQM) have
been investigated by Finkelstein et al. [7]. Adler [8] proposed the idea of algebraic quaternion generalization of classical Yang-
Mill’s theory. Soucek [9] used the quaternion quantum mechanics to describe the theory of tachyons (particles travel faster than
light). Keeping in the view the possibility of extension of quaternion formalism to curved spaces [10] and that of quaternion
number to 16-dimensional algebra, some authors [3-6] developed quaternionic formulation for extended Maxwell’s equations.
Quaternions also play an important role in classica field theories [8] and extend the manifold structure. Quaternion
representation of the Lorentz group for classical physical application has recently been developed by Abony et al. [11] and
maintained the relativistic covariance even for the existence of the magnetic monopole. In order to understand the theoretical
existence of monopoles (dyons) and keeping in view of their recent potential importance, with the fact that formalism necessary
to describe has been clumsy and not manifestly covariant the quaternionic form of generalized field of dyons have been
developed in unique, simple, compact and consistent manner [12]. Rajput et al. [13] has developed the unique consistent
quaternionic formulation for dyons, which reproduces to usual electrodynamics in absence of magnetic charge.

Keeping in view the importance of quaternions and their roles in various problems of physics, in this paper, we have made an
attempt to reformulate the quantum equations of dyons in terms of simple, compact and consistent notations of quaternions.
Establishing the connection between the quaternion basis elements and the Pauli spin matrices, we have reformulated the
generalized wave function, generalized four-potential, generalized current, Lorentz force equation of motion associated with
dyonsin simple and compact quaternion notations. It has been shown that quaternionic form of generalized potential generalized
current and Lorentz force equation of motion not only compact and simple but aso remains invariant under quaternion
transformations showing that the presented formulation is manifestly covariant. Generalized Maxwell-Dirac equation,
generalized field tensor and continuity equation have also been reformulated by means of consistent quaternion notation in
simple and compact forms. It has been shown that the reformulation of quantum equations by means of quaternions of dyons
reproduces the theory of electric charge (magnetic monopole) in the absence of magnetic monopole (electric charge) on dyons.

I1.DYONSAND THEIR FIELD EQUATIONS
Following Rajput et. al. [13] , let us define the generalized charge on dyons as
g =e-ig ..
where e and g are electric and magnetic charges respectively. Starting with the idea of two four-potentials [14]
{A} = {¢ A and{B“} = {¢°, B} respectively associated with electric and magnetic charges we define the generalized
. )7 —_ 7 — _ H
four-potential {V“} = {#,V} ofdyonsasV , = A i B, ..(2

V4

The electric and magnetic fields of dyons are defined in terms of components of electric and magnetic potentails as

E=-2-fo,-0x8 & H=-T-0,+0xA -3
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These electric and magnetic fields of dyons are dual invariant under duality transformations given by
E_ECosd+HSnd & H — —E Snd + H Cosd (%)
along with then following dual transformations between potentials
{A"} 5 {A"} Cosf +{B“} Sng & {B“} - —-{A“} Sno +{B*“} Cosf . ..(5
Apart from equation (4), the expression of generalized electric and magnetic fields given by equation (3) are symmetrical. Here,
both the electric and magnetic fields of dyons may be written in terms of longitudinal and transverse components while the

magnetic field is purely transverse in case of pure electric charge. Let us introduce the generalized electromagnetic vector field
of dyons as complex quantity i.e.

w =E-iH ..(6)
which satisfies the following generalized Dirac Maxwell’s (GDM) [13]
L v -
Ow =J & —-1J
4 0 ot (7)

where J, and J arethe generalized charge and current source densities of dyons which are given by
J, = i~ ik, O, -J),

’ . = - L= ...(8)
pP=p — 1 pg;d =] -k
The relation between generalized vector field and potential of dyonsis given as
Y . -
v = Tl gradv , —i curl V ...(9)
The tensorial form of generalized Dirac Maxwell’s (GDM) is defined as
F,uv,v = J,u & F,uv,v = k/l (10)
where
F;zv = E//V - H,uv & Fyv = H/zv - Hv
= — = - .. (11
E/tv _Ay,v Av,/t&Hyv_B/l,v BV,/I ( )
E/,zv = %g/tvpcr EI’U & Hyv = %g,uvpo—H
From equation (7), we obtain a vector parameter S (say) i.e.
= 0J . <
S=oW-= —E—grad J, —i curl J ..(12)
where O represents the D’ Alembertian operator and is given as
9° 9> 0° 9° 0°
—2_|:|2 = “7 a2 a7 T o ...(13)
ot ot ox oy 0z
Defining generalized field tensor as
G/zv = F/tv - I F,uv ; (14)
one getsthe following generalized field equations of dyonsi.e.
GW,V = 1, & G#V'V =0 ...(15)
where
G/lv :V/t,v _Vv,/t ...(16)

is called the generalized electromagnetic field tensor of dyons. In terms of four-potential { V P } thefield equation(15) may
be written as

oV p = J P ..(17)
Equations (10) and (15) are invariant under duality transformation [13]
(F, F) = (FCosf+FSng, -F Sn#+ F Cost) ..(18)

(. » k) = (j,Cosf +k,Sng, -j,Sn0+k Cosf)

j
H H Hv
Thus, the generalized charge of dyons may also be written as

q = |g|exp( -i&) ..(19)
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The Lorentz force equation of motion for dyonsis
2

d X, . ,
f, = m°d7: Re (q G, Vv") ...(20)

"

2
/]

where Re denotesreal part, 5
T

isthe four-acceleration and V" isthe four-velocity of the particle.

1. QUATERNION ANALYSISOF DYONIC FIELDS
Taking the curl of second part of equation (7), we get

EX(EXQ):EX%i%—T—iJE 0 00 0P) - 029 :—i%(ix‘@)—iixj
201 3 2 3
083,-020 = -2P_ 9 m.50 0 _pepp=-P @y —ifx]
ot ot t ot
- aJ . -
ad oW :—E—grad Jo—icurl J = S (say) ..(21)

where [ is called the D’ Alembertian operator and we have used the vector properties and Ist part of equation (7). From (9) and
(21), we see that the roles of V and V, in Wand J and Jy in W are same. Therefore, J must be related with by the

same operator

In order to write the field equations (9) and (21) in quaternionic form we define the quaternion in terms of Pauli spin matrices as
qQ=09, +t 0,0, *0,q, * 0;Q;, (22

where o, = e, cl=1 & o0 =0 tigyo,.

The four—potential {V,} and four—current {J} of electromagnetic field may also be written as quaternion valued in the
following way

V. =V,+o0,V,+0,V, + 0,V, ..(23)
and

J=J,+0,J,+0,),+0,;J3, ....(24)
The quaternion differential operator D can be written as

D=0,+0c,0,+0,0,+ 0,0, ...(25)
Operating the equations (23) and (24) by (25) we have

DV=(0,+0,0,+0,0,+0,0;)(Vg+0o,V,+0,V,+0c,V;)

= (0,V, +diw )+ +o,{a v, +0,V, +i(OxV),}
+0,{00V, +0,V, +i(OxV),} + 05{0 Vs +0.V, +i(OxV),)}

=Y, -o,¥W,-0,¥, -0,¥, ...(26)
Using, W, = 0.V, +divV =0 (dueto Lorentz condition) and W, = =0V, -0V, - i(O ><\7)j from equation
(9), we get
DV = -y .27
Similarly

DJ=(@0,+0,0,+0,0,+0,0,)(0,J,+0,),+0,),+0,J;)
= (0,3, +dvd ) + o,{0,9,+0,3,+i(0xJ),}
v 0,{0,3,+0,3, +1(Ox3),} + 0,{0,d5+0,3, +i(OxJ),)}
=S,-0,5 -0,S,-0,S,;

Here S, = (0,J, + divj) = 0 (due to equation of continuity) and

S = -0,J, -0,J, ~i(0xJ), (ean.(21)
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Therefore
D J=-S(nce S = 0,5, + 0,5, + 0,S;) ...(28)
Now the quaternion conjugate of D, V, J, W and S are define as
D=0,-0,0,-0,0, 0,0, ...(29)
V=V,-0oV,-0c,V, -oc.V, ...(29b)
J=J,-0,d,-0,),-0,J, ..(290)
Y=y -c¥W -c,¥,-0c,¥, ...(29d)
S=S,-0,S -0,S,-0,S, ...(29)

Operating W by D we get
DW= (00-0,0,-0,0,-0,0;) (o,¥, +0o,¥, +0,¥,)
= -0 W 624’2 - 53L|J3+ O-l{aolpl - i(azws —53L|-’2)}
+02{00W2 —i(0,W, - a1l'|"3)} + 0'3{004’3 —i(0,¥, - anJl)}
=-0W + O-l{aOLlJl —i(0 x qJ)l} + 0'2{50‘4-’2 —i(0x qJ)z}
+ 03{60w3 —i(0x qJ)3}
=-Jy-o0,d;-0,), ~0,d;,
O DW =-] ..(30)
Similarly
W:(Vo —oN, oV, =0oV;)(0,~-0,0, 0,0, - 0;0;)
= (0,V,y + dW ) - o {a Vv, +0V, +i(OxV),}
- O-z{aovz +0,V, +i(0 XV)Z} - 0'3{60\/3 +0,V, +i(0 XV)3)}
=W, +to, W, +to,¥,+o0,¥,
Therefore,W = Y ...(3D)
Likewise (DJ) =(0y,Jy-0,J,—0,),-0,3,)(0, 0,0, —0,0, —0c,0,)
=0,y +divd - 0,{0,9,+0,3,+i(0xJ),}
- O-z{ao‘]z +0,J, +i(0x ‘])2} - 0'3{60‘]3 +0,J, +i(0x J)s)}
=S,+t0,5,t0,S,+0;S;
Therefore, m = S ...(32)
Now we may express J and S intermsof V and W . Here, the temporal component of J may be written as
J,=00P =9,W, +0,¥W,+0,¥,
= al{_ 0oVy =0V —1(0,V; — a3\/2)} +02{— 0oV, —0Vp ~i(0:V, _61\/3)}
+0,{-0V, -0V, -0V, -0d,V,)}
= =0,(0,V, +0,V, +0,V,) -0V, — 03V, -3V,
= 0,(diw ) - (02 +05 + 6§)VO = —60(—60V0)—(D2)V0 [0V, +dwW =0]
= O(Z,VO - D2V0 = (63 - DZ)V0 =V,
Thus the temporal components of J is related with the temporal component of V .
The spatial component of J can be expressed of as
J,; =0 W, +i(0xW¥), = _ao{_aovl =0V, —i(0 XV)1}+ i{azws —034’2}
= agvl - agvl - agvl + a1(60\/0 + 62V2 + a3\/3)
aévl - a12\/1 - agvl - agvl + a1(60\/0 + a1V1 + azvz + aavs)
(GS—DZ)V1+ 0,(0,V, +diw ) = V, [0V, +dW =0]
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Similarly J, = V, & J; =V,
Thus the spatial components of J are related with the spatial component of V . Therefore we can write

V = J ...(33)
The temporal component of S i.e. S, iszero dueto continuity equation. The spatial components of S are expressed as

S; =70 ¢J; - 0,J, —i(HxJ),
= = 0,{-9,W, +i(@xW),}-0,(0 W)
- i[az{_ aol’le +i(0 x l‘P)s} - 63{_ aol’Pz +i(0 x l'I',)z}]
= 0;W, -i0,0,W, +i0,0,W,-0°W¥, -9,0,W,—-i0,0,¥,
+0,0,W,-05W, -i0,0,W,-05¥,+09,0,¥,-9,0,¥,
= 0o, - 07w, —03W, - 03w, = (0;-0%)¥W, = W,

Similarly S = WY& S = Y,
Thus, the spatial components of S are related with the spatial components of Y and we can write
Y =2>-5 ...(34)

Now operatingB by D and D by Bweget,
bbb =0,+0,0,+0,0,+0,0;,)(0,—-0,0,—0,0, —0,0;)

=05-07-05-05=(0;-0Y)W¥, = ...(359)

DD = (0g=0,0,-0,0,-030;)(0,+0,0,+0,0,+0,0;)

=05-0;-05-0; = (0;-0%)¥, = 0O ... (35h)
Therefore . _

DD =DD = ...(36)
Similarly

VV =VV = V2 —’\7‘2 .37

- = 2
337=33=3¢-3| ..(39)

In order to write the field equation (7) and Lorentz force equation (20) as quaternion valued, we may write the generalized field
tensor G v four-velocity { V"' } and four-force { f u} in the following quaternion notations as,

G=0,G,+0,G,+0,G, +0,G, ...(39%)

V=o0o,W,to,Vv, +to,v, + o,V, ...(390)

f =ocyfgto, f,+o0,f,+0,f, ...(3%)
where

G,=0,G,,t0,G,,+0,G,,+00,G,; (n=01223) ...(39d)

The elements (terms) of equation (39a) i.e. the components of G are not real but they are also quaternion showing that not only
the vectors but tensors can be represented as quaternions. The componentsof G ie. G, G, G, and G; may be written
in the following quaternionic forms

Gy =0,Gy +0,6p +0,G6q +0,G ---(400)
G, =0,G, +0,G,, +0,G, +0,G; ...(30b)
G,=0:Gyx to,Gy +t0,G, +0,G, -.-(400)
Gy =00Gy + 0,65 + 0,65 + 0,65 ---(40d)
where
Gyp =G,; =G, =G, = 0 (duetoanti-symmetric nature of field tensor)  ...(40e)
Operating quaternion differential operator D given by equation (26) to G given by (40), we get
DG, = (0p+t0,0,+0,0,+030;)(0,Gy +07,G6, +0;G4)

= 0,0,Gy +0,0,Gy, +030,Gy; +0,Gy,; +1030,Gy, —10,0,Gg,
—1030,Gy, +0,Gy, +10,0,G; +10,0,G, —10,0,Gy; +0,Gy; ...(414)
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and

Gy, D = (-0,Gy —0,Gp —0,Gu)( 0, — 0,0, — 0,0, ~0303)

= —010,Gy +0,Gy; +1040,Gy; —10,0,Gy, —0,0,Gg, ~1030,Gpy
+0,Gy, +10,0,Gy; —040,Gy; +10,0,Gyy —10,0,Gy5 +0,G;;  -..(41b)

Adding equation (41a) and (41b) we have

DG,+G, D = 2[8,G,, +0,G,, +0,Gx1 =21,
usng [A,B] =1] AB+BA]J, thusweget

[D,G,] =4[DG, + G, D] = J ...(42a)
Also
DG = (0p+0,0,+0,0,+0;0;)(Gy+0,G,+05Gy,)
= 0,Gy +0,00,Gp, +030,Gy3 +0,0,Gy; +1040,Gy, —10,0,Gy3 +0,0,G, +0,Gy,
+10,0,G3 +0,0,G,, —10,0,G,, +0,G;5
and

El D = (G =06, —05G3)(0, — 0,0, = 0,0, — 0,0;)
=0,Gyy —0,0,Gyy = 0,0,G,5 —030,Gyy —0,0,G,, —1030,G,, +0,G, +10,0,G,,
= 030,G; +10,0,Gy; —10,0,G)3 +0,G,4
Thus DG, + G, D = 2[0,G,, +3,G,, +3,G,,1= 2J,

Therefore

[D,G,] =1[DG + G D] = J, ...(42b)
Similarly

[D,G,] =1[DG, + G,D] = J, ...(42c)

[D,G,] =1[DG,+ G,D] = J, ...(42d)
Also

DG =(0,+0,0,+0,0,+0,0,)(G,+0,G,+0,G,+0,G,;)
=(0,G, +0,G, +0,G, +0,G;) + O'l{aoGl+aleo +i(0,G;, —63G2)}
+02{aoGz +0,G, +i(0,G, - ale)} + 03{6063 +0,G, +i1(0,G, _6261)}

and
GD =(Gy-0,G6,-0,G6,-0,G,)0,-0,0, —0,0, —0c,0,)
=(0,G, +0,G, +0,G, +0,G;) - Gl{aOGl-'-alGO +i(0,G, _6362)}
- Uz{aoGz +0,G, +i(0361_6163)} - 63{50G3+03Go+i(61G2 _6261)}
Thus
DG+GD = 2[0,G,+9,G,+0,G, +9,G,]
Therefore

[D,G] = 1 [DG+GD]= 9,G,+0,G,+0,G, +9,G,
= 0o[0,Gy + 0,6y, + 03,G] +0,[Gy + 0,6, +0,G,5]
+0,[Gy + 0,6, + 035G ,] +0;5[Gy + 0,6y +0,G5]
= 0,[0,Gy +0,G, +0,Gg] +0,[0,G,, +0,G,, +0,G,5]
+0,[0,Gy +0,Gy +0,G5] +0,[0,Gy +0,Gy +0,G4]
=Jotodito,d, tozd,

O[D,G] = J ..(43)
which is quaternionic form of equation (15).
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Also
DJ+JD =2[0,],+0,d,+0,,+0,J.]
=2[0,J,+div] ] = O (dueto continuity equation)
Thus
[D,J] = O ...(44)

which is nothing but the continuity equation in quaternionic form. From equations (39) and (40), the force equation (20) may be
written in terms of following simple and compact notations of quaternions as

f=q[v,G] =1q[VvG+GV] ...(45)
V. DISCUSSION
The generalized wave function have been expressed in complex form in terms of electric and magnetic field components of

generalized four- potentials associated with dyons. Taking the curl of [Ix Y we have obtained the relation between the
components of generalized four-current with the generalized field associated with dyons namely a new generalized vector field

S. As such the S behaves with the components of generalized four-current in the same manner as W is identified with the
components of generalized four-potential of dyons. The electromagnetic four potentials and four-currents have also been
expressed in quaternion form . We have also written the differential operator in quaternion form and operated the four potentials
and four-currents by quaternion differential operator . After using Lorentz gauge condition and continuity equation we have

obtained the equation DV = =W and D J = — S which are the quaternionic form of generalized potential and generalized
four-current of dyons respectively. As such these two equations are quantum equations respectively for generalized four-
potential and generalized four-current of dyons. These equations are the short hand notation and written in  compact and
consistent way. These two equations remain invariant under quaternion transformations and as such the quaternionic formulation

becomes manifestly covariant. After taking the quaternion conjugate of D,V ,J, W and S and operating those with one

another we have obtained the relations between generalized vector field and the components of generalized four-current of
dyons and hence establishes the quaternionic form of generalized Maxwell-Dirac equation of dyons in simple, compact and
consistent manner. On the other hand, we have describe the quaternion conjugate forms of generalized potential and current of
dyons. The temporal and spatial components of four current have been expressed as the D'Alembertian operator of the
temporal and spatial components of tour potentials. The generalized field tensor, four-velocity, components of field tensor and
Lorentz force equation have al so been written is quaternionic form.
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